
OSGitales from the trenches

OSGi
Tales from the Trenches

Bertrand Delacretaz

Senior R&D Developer, Day Software, www.day.com

Apache Software Foundation Member and Director

bdelacretaz@apache.org

blog: http://grep.codeconsult.ch

twitter: @bdelacretaz

ApacheCon Europe 2009, Amsterdam

slides revision: 2009-03-25

Special thanks to:

Filippo Diotalevi (osgilook.com)

and The Day R&D team

for additional input!

OSGitales from the trenches

What?

Share our experience using Apache Felix at

Day, for a major rewrite of our content

management products.

More than two years working with OSGi, very

high impact on developers, customers, service

people, mostly in a positive way.

OSGi is no silver bullet either.

silver

OSGitales from the trenches

Ok but what?

the

GOOD
the

BAD
the

UGLY
and the

FUTURE
symbols by ppdigital , o0o0xmods0o0oon and clarita, on morguefile.com

OSGitales from the trenches

Introduction

OSGitales from the trenches

First a warning
is not an OSGi guru!
I’m just a poor lonesome user...

OSGitales from the trenches

OSGi ?

OSGi™

The Dynamic Module System for Java™

http://www.osgi.org (see also Wikipedia)

Consortium founded 1999, 100 companies.

Initially meant for mobile devices.

Now moving to server-side, fast.

Eclipse, LinkedIn, GlassFish, WSO2,

WebSphere and many others.

@apache: Felix, ServiceMix, Sling, CXF,

Tuscany and more, growing.

OSGitales from the trenches

Trenches?

family of content

management products,

R&D team of about 30

built on Apache Sling,

uses Apache Felix and

Jackrabbit

http://www.day.com/cq5

http://jackrabbit.apache.org

http://felix.apache.org

http://incubator.apache.org/sling

OSGitales from the trenches

What we use from OSGi

Bundles (using Maven plugins)

Lifecycle, Service Tracker

Configurations and Felix Web Console

Declarative Services (using Maven plugins)

Sling’s jcrinstall module

(bundles and configs loaded from the JCR repository)

Log, HTTP, Event services

presented by Carsten at 10:30

OSGitales from the trenches

Famous quotes

OSGitales from the trenches

Famous Quotes, #1

“Effectively, OSGi brings many of the

desirable aims of SOA into the JVM."”

Paul Fremantle

http://pzf.fremantle.org/2009/02/wso2-carbon-

part-1.html

OSGitales from the trenches

Famous Quotes, #2

“Each (OSGi) bundle can serve as a micro

application, having it's own lifecycle,

having it's own citizens and each bundle

can carefully decide which objects to

expose to the outside world”

Peter Rietzler

http://peterrietzler.blogspot.com/2008/12/is-osgi-going-

to-become-next-ejb-bubble.html

OSGitales from the trenches

Famous Quotes, #3

“OSGi is great, but the tooling is not quite

there yet. Not every library is a bundle and

many JARs don’t have OSGi manifests”

Matt Raible in

http://blog.linkedin.com/2008/06/23/osgi-at-linkedin-

integrating-spring-dm-part-1/

OSGitales from the trenches

Famous Quotes, #4

“The lifecycle model of OSGi makes life

complicated. Actually, tracking services

and managing all the aspects of what to

do when services come and go is nasty”

Peter Rietzler

http://peterrietzler.blogspot.com/2008/12/is-osgi-going-

to-become-next-ejb-bubble.html

OSGitales from the trenches

Famous Quotes, #5

“The challenge for the coming year is to

make OSGi more in line with the

expectations of the average J2EE

programmer because we see that need”

Peter Kriens in a comment at

http://peterrietzler.blogspot.com/2008/12/is-osgi-going-

to-become-next-ejb-bubble.html

OSGitales from the trenches

Famous Quotes, #6

“OSGi makes "impossible" things easy:

hot deploy/upgrade, service discovery, ...

and trivial things hard: hibernate, tag

libraries, even deploying a simple war!”

But, for the first time in my

career, I see software reusability

that works: service reusability.

Filippo Diotalevi

OSGitales from the trenches

Our opinion

OSGitales from the trenches

The Good

OSGitales from the trenches

Modularity

Classloading

distinct from

class visibility.

Bundles as

reusable

components.

At last!

Public packages

Metadata

OSGi bundle

Private packages

Matchless picture: Alvimann on morguefile.com

OSGitales from the trenches

Declarative Services
/**

* Excerpts from a Sling Servlet, processes *.query.json requests

* Uses Felix’s maven-scr-plugin annotations

* @scr.component immediate="true"

* @scr.service interface="javax.servlet.Servlet"

* @scr.property name="sling.servlet.resourceTypes" value="sling/servlet/default"

* @scr.property name="sling.servlet.extensions" value="json"

* @scr.property name="sling.servlet.selectors" value="query"

*/

public class JsonQueryServlet extends SlingSafeMethodsServlet {

 /** @scr.reference (injected by framework) */

 private SlingRepository repo;

 // activate(ComponentContext) and deactivate(ComponentContext)

 // methods are called by framework if present

 ...

}
Annotated Java class +

Maven plugins == OSGi service

OSGitales from the trenches

Clean API

Just a few

basic examples...

OSGitales from the trenches

Dynamic loading / unloading

Just copy bundle jar

to Sling’s JCR

repository (WebDAV)

Bundle activated

and started.
(using Sling’s jcrinstall module)

OSGitales from the trenches

Plugins for everything

Servlets
Mime-type based handlers

Content editors based on

JCR node properties

Content renderers and decorators

Debugging/monitoring tools

Mail and messaging services

etc, etc...

Legacy integration gateways

OSGitales from the trenches

Plugins: ServiceTracker

// Enumerate currently available AuthenticationHandler

// services, and select the one to use

ServiceTracker st = new

 ServiceTracker(bundleContext,

 AuthenticationHandler.class.getName());

ServiceReference[] sr = st.getServiceReferences();

for (int i = 0; i < sr.length; i++) {

 AuthenticationHandler h = (AuthenticationHandler)

 authHandlerTracker.getService(services[i]);

// ...

OSGitales from the trenches

Legacy/customer code

Ugly or

incompatible

code

segregated

via private

packages

Public packages

Metadata

OSGi bundle

Private packages

OSGitales from the trenches

Private / public packages

maven-bundle-plugin instructions:

<Export-Package>

 sling.jcr.jackrabbit.server.security

</Export-Package>

<Private-Package>

sling.jcr.jackrabbit.server.impl.*

</Private-Package>

OSGitales from the trenches

The Bad

OSGitales from the trenches

Granularity is a hard problem

How many bundles?

> 100 currently in cq5

How to handle “implementation details”

libraries.

Extra bundles or private packages?

Strict version management required.

Are we there yet?

OSGitales from the trenches

Clean up those packages!

Clean

separation of

interface and

implementation

packages

required

Public packages

Metadata

OSGi bundle

Private packages

but when done!

OSGitales from the trenches

Integration testing required

V5.3
V6.54

V4.2

V5.11

V1.03
V4.22

V3.22

V4.5 V7.4

V2.13

V3.2

V3.2
V6.4

V1.03

V3.21

V1.11

V1.05

V6.4

V5.6

V2.4

V3.4

V5.43

In-system

testing?

but when done!

OSGitales from the trenches

Is OSGi scary?

“OSGi is difficult to sell - it is adopted in

some really visible products,like

websphere, glassfish, eclipse, but people

don't know that.” (Filippo Diotalevi)

Where’s my J2EE?
Why so many bundles?

Whaddyamean “provisioning”?
Is the book ready?

OSGitales from the trenches

Is it too early?

me: Starting two years later might have

helped avoid initial pains and incomplete

implementations.

Felix Meschberger: If we would have done

that, we would be nowhere near where

we are now!

Server-side OSGi is still fairly new...

OSGitales from the trenches

The Ugly

OSGitales from the trenches

Asynchronous startup

V5.3
V6.54

V4.2

V5.11

V1.03
V4.22

V3.22

V4.5 V7.4

V2.13

V3.2

V3.2
V6.4

V1.03

V3.21

V1.11

V1.05

V6.4

V5.6

V2.4

V3.4

V5.43

“unpredictable”

startup order

1

19

7
11 15

14
17

10
3

16
18

9
8

4

6

2
11

5

13
12

19

20
Is the system ready now?

Threading

issues?

Caused by Declarative Services, not by OSGi itself.

OSGitales from the trenches

Unpredictable assemblies

V5.3
V6.54

V4.2

V5.11

V1.03
V4.22

V3.22

V4.5 V7.4

V2.13

V3.2

V3.2
V6.4

V1.03

V3.21

V1.11

V1.05

V6.4

V5.6

V2.4

V3.4

V5.43

Spot the monsters!
Security and lots of discipline would help

OSGitales from the trenches

Testing

OSGitales from the trenches

Testing?

JUnit

and mocks,

no OSGi

JUnit

with OSGI

Integration

testing,

OSGi, HTTP

Test the code

Required.

Sufficient?
Many examples in Sling

Test bundles

in realistic

conditions
We don’t use this at this time.

Test assemblies

in realistic

conditions
Sling launchpad and jcrinstall

OSGitales from the trenches

JUnit testing w/mocks
JUnit

and mocks,

no OSGi

Example, using jmock.org:

JsonReaderTest in Sling’s contentloader module.

@org.junit.Test public void testEmptyObject()

throws Exception {

 this.mockery.checking(new Expectations() {{

 allowing(creator).createNode(null, null, null);

 inSequence(mySequence);

 allowing(creator).finishNode();

 inSequence(mySequence);

}});

this.parse(""); }

 https://svn.eu.apache.org/repos/asf/incubator/sling/trunk/bundles/jcr/contentloader/src/test/java/org/apache/sling/jcr/contentloader/internal/JsonReaderTest.java

No OSGi needed,

fast!

But what am I

testing exactly?

Sometimes hard to

follow or modify.

OSGitales from the trenches

Integration tests, OSGi + HTTP

Sling app (cargo-maven2 plugin)

Felix OSGi framework

Felix OSGi console

Bundles under test

Maven JUnit tests

cargo-maven2 plugin starts webapp

HTTP

HTTP

surefire-plugin runs tests

Examples in Sling’s launchpad/testing

and jcrinstall modules.

OSGitales from the trenches

Integration test: JsonRenderingTest

 public void testRecursiveInfinity() throws IOException {

 final Map<String, String> props = new HashMap<String, String>();

 props.put("text", testText);

 props.put("a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y", "yes");

 final String url = testClient.createNode(postUrl, props);

 final String json = getContent(url + ".infinity.json",

 CONTENT_TYPE_JSON);

 assertJavascript(testText, json, "out.print(data.text)");

 assertJavascript("yes", json,

 "out.print(data.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y)");

 }

Simulate actual

usage!

OSGitales from the trenches

Unpredictable assemblies

V5.3
V6.54

V4.2

V5.11

V1.03
V4.22

V3.22

V4.5 V7.4

V2.13

V3.2

V3.2
V6.4

V1.03

V3.21

V1.11

V1.05

V6.4

V5.6

V2.4

V3.4

V5.43

Integration testing helps!

OSGitales from the trenches

The Future

OSGitales from the trenches

OSGi @day, 2 years from now

Developers got used to it (and

read the book).

Frameworks and tools improved.

Distributed OSGi? Maybe.

Customers understand OSGi and like it..

Apache Sling paved the way.

OSGitales from the trenches

Do we need more features?

Bundles (using Maven plugins)

Lifecycle, Service Tracker

Configurations and Felix Web Console

Declarative Services (using Maven plugins)

Sling’s jcrinstall module

Log, HTTP, Event services

Later:

Deployment packages. Security maybe.

More? Not really - tame what we use!

Today we use:

OSGitales from the trenches

Conclusions
Good? Bad? Ugly?

OSGitales from the trenches

Conclusions

OSGi is great for modularity

OSGi fosters better structured code

Dynamic services and plugins

Tooling needs to improve, but usable

OSGi skills need to improve!

Asynchronous startup can be problematic
if using declarative services

